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Abstract. A Hamiltonian cycle of a graph is a closed path that visits every vertex once and
only once. It serves as a model of a compact polymer on a lattice. | study the number of
Hamiltonian cycles, or equivalently the entropy of a compact polymer, on various lattices that
are not homogeneous but with a sublattice structure. Estimates for the number are obtained by
two methods. One is the saddle point approximation for a field theoretic representation. The other
is the numerical diagonalization of the transfer matrix of a fully packed loop model in the zero
fugacity limit. In the latter method, several scaling exponents are also obtained.

1. Introduction

A Hamiltonian cycle of a graph is a closed self-avoiding walk which visits every vertex once
and only once. The number of all the Hamiltonian cycles of a gaps denoted byH(G).
Hamiltonian cycles have often been used to model polymers which fill the lattice completely [1].
The quantity logH(G) corresponds to the entropy of a polymer systenGoim the compact
phase. One can enrich the model by introducing a weight that depends on the shape of cycles
in order to model more realistic polymers. For example, the polymer melting problem is
studied by taking into account the bending energy [2]. Another extended model relevant to
the protein folding problem is proposed in [3-5]. The quantit§G) is also related to the
partition function of zero-temperature £)(model in the limit» — 0.

For homogeneous graphs (lattices) withvertices, one expects that(G) behaves as

H(G) — C(G)N" oV (N — o0) @)

where the entropy per vertex lagis defined by
.1
logw = Nlinoo v logH(G). (2)

The connectivity constanb is supposed to be a bulk guantity which does not depend on
boundary conditions, whereas the conformational expopredepends on such details of
graphs [6]. | assume that equation (1) is not multiplied by a surface téfm, o < 1
proposed in [7-9] because in the present case Hamiltonian cycles fill the whole lattice which
itself does not have a boundary.

A field theory representation 6{(G) for an arbitrary grapl@ is introduced by Orland
et al [10] and has been used to study the extended models [2, 5] as well as the original
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Figure 1. The square-diagonal (Union Jack) lattice. The decompositidéhaufnsists
of two classes¥; = {e} andV, = {o}.

one [11,12]. For homogeneous graphs with the coordination numbtre saddle point
approximation yields

H(G) ~ (wsp)¥  wspi= g €)

orw >~ wsp. Equation (3) has been very successful. For the square lattige—= 4/¢ =

1.4715. .. is quite near to a numerical estimate~ 1.473... [6,13-15]. It is found that the
estimatawsp = 4/¢ is unaltered in the next leading order in the perturbation theory [12]. For
the triangular lattice, the field theory predietgp = 6/¢ = 2.207 28... while a numerical
calculation suggests ~ 2.095... [13]. An exact solution is available for the hexagonal
lattice [11,16] . It impliesw = 3%¥4/2 = 1.13975..., which is near to the estimate

wsp = 3/e = 1.10364. ... More examples are given in [11]. The saddle point equation is so
good that one may speculate that the system is dominated by the saddle point configuration.
It is desirable to understand why this approximation works so well.

In this paper, | systematically study(G) for inhomogeneougraphs by the field theory.

A graph is said to bénomogeneous its automorphism group acts on the set of vertices
transitively. Roughly, a graph (lattice) is homogeneous if all the vertices are equivalent.
Note that the estimate (3) is not applicable to inhomogeneous graphs. An example of an
inhomogeneous graph is the square-diagonal lattice shown in figure 1. An earlier study in this
direction can be found in [11].

Inhomogeneous graphs are as important as homogeneous ones in physics because they
model certain realistic materials well. Applying the saddle point method to them is expected
to cast light on the nature of this extraordinary good approximation.

Another achievementin this paper is an accurate measurement of the connectivity constants
o and scaling exponents by the numerical transfer matrix method. Thisis based on the mapping
onto the fully packed loop model in the zero fugacity limit. The results should be compared
with the field theoretic estimates.

The organization of the paper is as follows. In section 2, the field theoretic representation
of H(G) is explained in order to make the presentation self-contained. | derive a formula for an
estimate of(G) by the saddle point method when a graplas a sublattice structure which
makesG inhomogeneous in section 3. It is applied for a number of examples in section 4. In
section 5, | prove some exact relations amoéti@y) for several lattices. | explain the method
and the result of numerical transfer matrix analysis in section 6. | summarize my results in
section 7.

2. Field theoretic representation
Let G = (V, E) be a graph, wher¥ andE stand for the sets of vertices and edges. One sets

V ={ry,ra...,ry}, N := #V. The number of Hamiltonian cycles, denotedMyG), can
be written as a &-point function of a lattice field theory in a certain limit. To this end, one
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introduces @n) lattice fieldy; () (r € V, j =1, ..., n) with the action

Sle]li=3 Y. ;O =IAT )8 (). 4

An infinitesimal parameter — +0 is the convergence factor. Te x N matrix A is the
adjacency matrix of the grapfi:

1 if r,r’ e Visconnectedbyane E
Arr’ = . (5)
0 otherwise.
It can readily be shown that [10]
120 $P0rw)
G) =lim lim - 6
H( ) nILnOeLnJ-On < 2 2 ( )
where
1 -
(.= 2/ [[ dg;(.)e ) 7)

with the normalization factoZ to ensurg1) = 1.

The proof is diagrammatic. Note that the propagator is proportional to the connectivity
matrix: (¢; (r)¢x(r")) = —+/=18;xA,. When Wick's theorem is applied, each of the
surviving diagram after taking the — O limit corresponds to a Hamiltonian cycle 6f
with an equal weight. The limit — 0 is taken for discarding disconnected diagrams.

When the graplt; is homogeneous, there is a mean-field saddle point

p(r) =% =/-2qi (8)

whereq := ", A, is the coordination number @. It gives rise to the estimate (3).

3. Saddle points for sublattices

Given a graphG = (V, E) which is not necessarily homogeneous, | look for a saddle point
for the integral expression (6).

| decompose the séf into classes:V = U ,V,, with N, := #V,. Letq,(r) be the
number of edges one of whose endpointsé&V and the other belongs §,. | only consider
such divisions thaj, (r) = q,(r') holds ifr andr’ belong to an identical class, sa%,. Then it
makes sense to defigg, := ¢,(r). Because of the relatiap,, Ny, = gpaNay Sap := gaprN /N,
becomes a symmetric matrix.

Any graph has such a decomposition; one is free to #gke {r,},a =1,...,m = N.
| concentrate, however, on the case wherstays finite in the limitv. — oo. In other words,
| focus onG with a sublattice structuret. Hereaft€ér is referred as a sublattice.

I proceed to evaluate (6) by the saddle point method. Respecting the sublattice structure,
an ansatz for the saddle point configuratigf () for (6),

() = Tada(r) ©)
a=1

T Note, however, the saddle point method is worth considering as an approximation scheme even for the case
V, = {r.},m = N. EstimatingH(G) by the saddle point method as described below takes only polynomial time in
m(= N) while determiningH(G) exactly for an arbitrary grap& is an NP-complete problem [17].
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is employed. Here, is ann-vector variable to be solved, labelled by= 1, ...,m. The
membership functiod, (r) is defined by
1 if rev,
8,(r) = . 10
*) 0 otherwise. (10)
In order to calculateS[¢©], one needs to know hows~* acts ons,. First, | write the the
number of edges connectiig andr € V in two ways as

m Na
Z Arr’ﬁa(r/) = Z Fqbaﬁb(r)- (11)
rev b=1 "'
Rewriting the right-hand side in terms of thex m symmetric matrixs,,, | have
N m
Fa ZV Arr’(sa (}’/) = ; Sab(sb(r)~ (12)
r'e =

I apply A=15~1 on both sides to obtain=13,:

7 N
DDy 0() = D (A8, (13)
b=1 b

reV

Because of this relatiors[¢© ()] reduces to

S[p© ()] =-N1In2 +; No N, - Bg) — % S Nar@a - Bp). (14

a,b=1

One can assume that the saddle point is of the fgym (x,, 0,0, ..., 0) and vary the action
(14) with respect ta,,. One obtains: saddle point equations

2N, 5, oo

N = ;(S Dapxaxy — (@=1,...,m) (15)

or equivalently

Yo =3 (16)

b=1
which are to be solved for,,a = 1,..., m. This is a set ofn quadratic equations with

unknowns. If the solution to (15) is not unique, the one that minimizes the action (14) should
be selected. Putting the solution back into (14), one obtains an estimate

1 m 2\ Na/N
H(G) ~ (wsp)” wsp = — l_[ (%) . (17)
a=1

This generalizes the estimate (3) to the case of inhomogeneous graphs.

4. Decorated square lattices

4.1. Square-diagonal lattice

| apply the estimate (17) to the square-diagonal (Union Jack) lattice drawn in figure 1. The
decomposition oV consists of two classdg = {e} andV, = {o}. The matrixg,, is given

by
g = <j g). (18)
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V(tu) D(t,u)
y
a
.4
a
.4
a
{ u { u

Figure 2. Square-triangular latticeB(r = 2,u = 1) andD(t = 1,u = 4). The integers and
u are the numbers of plaquettes with and without diagonal edges, respectively, consecutive in the
horizontal direction. The sublattices are distinguished by the shape of the vertices.

Each class has an equal number of vertichis:= N, = %N. | assume that the sublattice
structure is respected at the boundary.

The field configurationt; = 8/8, x, = § becomes a saddle point in the lindit— 0.
Equation (17) yields

4
P =" (19)

which is, surprisingly, exactly the same value as the simple square lattice. It means that
the H(G) of the square-diagonal lattice grows no faster than that of the simple square lattice
though the former has many additional diagonal edges. Itturns outthatitis the case; the simple
square lattice and the corresponding square-diagonal lattice have exactly the same number of
Hamiltonian cycles, which | prove rigorously in section 5.1.

4.2. Square-triangular-type lattices

As another example of the use of (17), | apply it to a series of inhomogeneoust square-
triangular latticeD (¢, u) andV (¢, u) depicted in figure 2. They are square lattices with some

of the diagonal edges added. The matrigefor them are all tridiagonal matrices if one
labels sublattices appropriately. Here | show #hex m matrix g and the fractionw, /N of
V(1,2m —1)andD(1, 2m — 3).

LatticeV (1, 2m — 1).

4 1 0 0 --- 0
1 2 1 0 :
0o 1 2 °
N 1
: 1
O .-~ ... 0 1 3

T The latticeV (1, 1) turns out to be a homogeneous graph with the coordination nugnbes.
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0.9 ‘ ‘ ‘
> V(tu) (SP, field theory)
o D(tu) (SP, field theory)
0.8 [ ——=-— V(tu) (TM, numerical) o 1
eex—t D(tu) (TM, numerical) o o
0.7 + o %o ° ]
o . o]
o ® 3
gﬁ 06 ! g o ,
—_— o g 8 X
8 ] ¥
05 .0 8 % 1
QO%;B( =] %
0.4 | B a§a ‘ ® ® 1
03 1 1 1 1 1 1
0 0.2 04 0.6 0.8 1
t
tvu

Figure 3. The estimates fow are plotted. The saddle point approximatige for V (¢, u) (O)
andD(z, u) (O) with 27 +u < 16 are compared with the result of transfer matrix calculatign
(d and x with an error bar, respectively). For detailsfat= % % see table 1.

Lattice D(1, 2m — 3).

2 2 0 0 ---0
4 0 2 0 :
1
0 2 O (a=1,m)
Na 2m — 2 ’
N L 0 N (otherwise) &
) A C— .
0O --- --- 0 2 0

For smallm, equation (15) can be solved analytically. For examplél,, 3) turns out to
possess the saddle point

— === [2+— (22)
which implies

= 1.64225,... (23)

vay 1+2/3
SP - e

As m increases, one is forced to solve equation (15) numerically. Figure 3 illustrates the
dependence of logsp of V (¢, u) (¢) andD(t, u) (o) on f :=t/(¢t + u). Note thatf = 0,1
correspond to the simple square lattice and the triangular lattice, respectively.

For the purpose of comparison, | also plot an estimatg, the result of numerical
diagonalization of the transfer matrices f&i(z, u) (d) and D(¢, u) (x). The method to
calculatewry is explained later in section 6. Here | only mention that, under plausible
assumptionsery agrees with the true value within the precision of the numerical work
and the error originating from the finite-size effects, though it takes considerable memory and
CPU time to compute itt. On the other hand, calculatiagis quite easy.

T In the present analysis, the numerical diagonalization of sparse matrices of dimgﬂﬁ%has been carried out.
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| argue that the estimatessp capture the qualitative feature af, though there is a
certain amount of difference in the numerical values.

First of all, one notices thaispfor D(1, 2m — 3) is saturated just like the square-diagonal
lattice:

_ 4
a)SDél’zm 3= - m=2,3,...). (24)

This suggests that the diagonal edges contribute almost nothiigRgl, 2m — 3)).

In accordance with this fact, the numerical estimaﬁé,l‘zm’@ also stays identical with
wtm Of the simple square lattice. | will argue in section 5.2 thdbr D(1, 2m — 3) and that
for the simple square lattice should in fact be identical.

In the field theory, the saddle point féx(1, 2m — 3) is given by
X2g+1 = 8/5 X2q = 1) (5 o 0) (25)
Itis intriguing that one needs the limiting proceddre> 0 whenever one obtains the saturated
valuewsp = 4/e.

Secondly, apart from the seriég1, 2m — 3), the estimatasp increases withy for both
V(t,u) andD(t, u) as naturally expected. The result fof, confirms this naive expectation.
Moreover, in both analysigsptv for D(t, u) is always slightly lower thaw (¢, u) for a fixed
(t,u).

Lastly, some detailed structures ofy, are reproduced imsp. For example, there is a
violation of simply-increasingness afq for the pairD(2, 1) andD(3, 2). It is also present
for wsp.

Near f = 1, there is a considerable difference between the numerical valugs ahd
otv- Note, however, this difference is already there for the triangular lattice, for which the
mean-field saddle point approximation (3) has been applied. Thus, this difference does not
imply the fault of the extension (17).

5. Exact relations amongH(G)

| prove some equalities amomg(G) for the square-diagonal lattice and the square-triangular-
type lattices.

5.1. Square-diagonal lattice

Let Gsp be a square-diagonal lattice of a rectangular shape Rjttx L, = N vertices.
The periodic boundary condition is imposed across the edges of the rectangle@iyiige
toric topology. | assume thdt, and L, are even and the square-diagonal lattice structure
is consistent with the boundary condition. | define a simple square laitigas the lattice
obtained by removing all the diagonal edges frGigp. It also hasV vertices. | shall prove
H(Gsp) = H(Gss). In other words, | will show that Hamiltonian cycles @nsp passes
vertical and horizontal edges but not diagonal edges.

| decompose the set of vertices 6%p into V; and V, as depicted in figure 1. Then
N1 = N, = N/2. On a Hamiltonian cycle, there aievertices andV edges. Supposk @
edges out ofV are diagonal ones. The two ends of a diagonal edge belovig ©n the other
hand, there ar&/ — N9 vertical or horizontal edges each of which connégtandV,. Thus
| have

Ni=@2xNY+1x (N-N) x 3 (26)
and
Np=(N—-N9) x 3 (27)
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Figure 4. An example of fully packed loop configuration witti. = 8 on the simple square
lattice V (0, 1) . The loops are drawn in thick lines.

which imply N@ = 0.
BecauseH(Gsp) = H(Gss) for Gsp and Gss at any finite size, one can take the limit
N — oo to havewSP = »SS,

5.2. LatticeD(1, 2m — 3)

Let G,, be afiniteD(1, 2m — 3) lattice of a rectangular shape. Again | assume the periodic
boundary condition on both directions, respectingfi@, 2m — 3) structure at the boundary.
I shall showH(G,,) = H(Gss).

For brevity, lwriteG C G'if V = V'andE C E’',whereG = (V, E) andG’ = (V’, E').
Apparently,H(G) < H(G') if G C G’. We have seen that the inequali§(Gss) < H(Gsp)
for the pairGss C Gsp is actually an equality.

It is crucial to find thatGss = G,, © Gsp. Thus, | obtainH(Gss) = H(G,,). This
relation, in the limitN — oo, again implies thawSS = 1273,

6. Numerical transfer matrix method

In order to estimate numerically, | map the problem of Hamiltonian cycles onto the zero
fugacity limit of the fully packed loop model. Then | represent the fully packed model onto a
state sum model with a local weight in order to construct a row transfer matrix. The quantity
w is related to an eigenvalue of the transfer matrix.

The partition function of the fully packed model with the the loop fugaeity given by

ZepL(n) = Z n. (28)

fully packed loop configuration

The sumin (28) is over all the fully packed loop configurations (figure 4), thatis non-intersecting
closed loops on the lattice such that every vertex is visited by exactly one of the loops. The
number of connected components of loops, denoteffjhycan be greater than one.

One can construct an equivalent state sum model in the following way. One begins with the
triangular latticeV (1, 0) with the coordination number = 6. The local degrees of freedam
live on each edge. The three possible valuesgik) is < (a directed edge)> (an oppositely

directed edge), and (a vacant edge). Let, ..., ¢g be the edges that share a vertexStates
Oney, ..., eg interact orv. The local vertex weight is
W(z(e), ..., z(ee)) =5 (s €C) (29)

if there is exactly one ingoing arrow and an outgoing ore athere the integek is given by
i (the angle of the right tupn
/4 ’

as illustrated in figure 5. Otherwis#, = 0.

(30)
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Figure 5. A vertex weight for the state sum model for the fully packed loop model. The parameter
s is a complex number. Other configurations are prohibited (wéigkt 0).

In other latticesD(¢, u) andV (¢, u), some of the diagonal edges in the latticel, 0) are
missing. One extends the above construction to them by just interpreting these missing edges
as existing edges on which only the vacant edge state is allowed.

The partition function of the state sum model is given by

Z(s) == Z ]_[ W(z(ej), - .., z(ejy)). (31)
z(e)=<«,—,—(ecE) reVv
Edgeg;,, ..., ¢j, are understood to share a vertexOne sees that the surviving configurations

in the state sum model are nothing but the fully packed loop configurations with a direction
associated with each loop component. Let us inspect a contribution from a loop. When one
walks along the loop in the associated direction to come back to the original point, one has
changed the directioft27 in total (if it is a topologically trivial loop). Therefore, the product

of the vertex weight on the loop i$® due to the choice (30). This is why the partition function

of the state sum model agrees with (28) with

n=s8+s578 (32)

Now one can think of a row transfer matrixof the fully packed loop model. For the
latticesD(z, u) andV (¢, u), one introduces a transfer matrix which maps a state on a row of
vertical and horizontal edges onto that on the upper row in figure 2. That is, a state acted by
T is a linear combination of an arrow configuration on the igW|/|/ ... /|/|. For the lattice
D(t, u), a one-unit shift in the horizontal direction is includedrito take care of the change
of the positions of diagonal edges.

It is important to note that the transfer matfixxommutes with the operator giving the
net number of upward arrows

d=#ND+H/)—#HI) - #HL). (33)

ThusT is block-diagonalized a6 = &, T,.
One considers an infinite cylinder geometry which is suitable for numerical transfer matrix
calculation. The horizontal direction is compactified with the pefias indicated in figure 6.
In thed = 0 sector there can be loops which wind the cylinder once. It gives rise to a
complication because such a loop contributess® = 2, nots® +s—8 = n. To avoid this, one
introduces a seam as in figure 6. One declares that a loop which goes across the seam from the
left to the right should gain an additional weigfit while the left-going one should gairr®.
Hamiltonian cycles are encoded in thie= 0 sector in the limiz — 0, ors — expH-T5
on the infinite cylinder. The conditiod = 0 excludes the configurations which have
unbalanced strings which travels from an end to the other end of the cylinder. The limit
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Figure 6. Square-triangular latticéé(r = 2, u = 1) andD(r = 1, u = 2). The periodic boundary
condition in the horizontal direction is introduced to give the lattice infinite cylinder topology. The
seam is indicated by broken lines.

n — 0 excludes small disconnected loops. In the followindgs simply set to zero. The
connectivity constanbry (L) for this geometry is given by

1
logm (L) = — log IAS(L)] (34)

where, (L) is theith largest (in the absolute value) eigenvalug gfL). One expects that,
by taking theL. — oo limit, one arrives at the bulk valuery = wty(o0). The values ofory
in figure 3 have been calculated in this way.

| notice that that the relation$$ = w32 = 5"*"~? holds already at every finite.

| assume that the rotational symmetry is restored inithe> oo limit with the sound
velocity v = 1 and that the system is described by a conformal field theory [18], which is the
case for the simple square lattieg0, 1). For other lattices, one observes, at least, that the
mass gap closes at— oco. Then scaling exponents are related to the finite-size behaviour of

other eigenvalues of the transfer matrix [19, 20]. The central chaggpears ast
1 TC
logem (L) = — log|ag(L)| = logwr (00) + &5 + O(L™), (35)
The correlation lengths and the scaling dimensiofxs of general geometric operators labelled
by i are given by [14]
A9(L 27 X;
é;1:'0 | ,0( ) _ TT
[Ao(L)] L
In particular, the geometric scaling exponetts and X, (corresponding to one and two
spanning strings, respectively) are related to the conformational exppmeetuation (1) by

+O(L73). (36)

1
)/:2(1—X1)1) —=2—X2. (37)
v

The result of the finite-size scaling analysis is shown in table 1. | have treated even and
odd L separately fol (0, 1) because there is an oscillatory behaviour of period two due to the
twist-like operator insertion [13]. | also see a period-three oscillatiorVfdr, 0). Presence
of such oscillations is not assumed for analysis of other lattices. | find that the exponisnt
always zero at finitd. and is supposed to be so in the limit—> oo.

The result in table 1 suggests that, except¥®, 1)(= D(0, 1)) andD(1, 2m — 3), the
system lies in the same universality class as the dense phase)ofo®f model at: = 0

whose exponents are
c=-2  X1=-5=-01875 X,=0
VvV =

19 (38)

NI

T For the triangular lattice, the restoration of conformal symmetry occurs in the frame where the triangles are regular.
Thus the formulae should be modified by the factox/&/4.
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Table 1. Exponents and the entropy per vertex estimated by the numerical transfer matrix method.
LatticesD(1, 2m — 3) are suppressed because they share the propertie¥ @@il). The integer

Lmax is the largest, the size of the lattice in the horizontal direction, which has been examined.
The exponenk is also measured and is found to be zero for all the lattices.

Lattice Lmax ¢ X1 logwtm logwsp

VO,)=0mod2 14 —-1.000(11) —-0.0442381) 0.387171(1) 0.386 294
VO, Di=tmod2 13 —2.510(5) —0.187510) 0.387168(2) 0.386 294
V(1,0)1=0 mod 3 9 —2.06(8) —0.196(18) 0.74088(7) 0.791761
V(L 1) 12 —1.98(9) —0.17517) 0.563057(18) 0.609438
V(1,2 12 —2.00(4) —0.1893) 0.498 809(3) 0.532186
D(1,2) 12 —1.98(10) —0.186(25) 0.470379(3) 0.495 166
V(1 9 —1.93(9) —0.183(19) 0.619823(4) 0.665920
D(2,1) 9 —1.98(3) —0.18914) 0.571025(1) 0.617 343
V(,3) 12 —1.90(29) —0.176(3) 0.46905(4) 0.496 068
V(2,2 12 —1.89(18) —0.216(10) 0.55761(4) 0.612848
D(2,2) 12 —1.90(14  —0.203(10) 0.53917(3) 0.574521
V(3,1 8 —1.87(18) —0.174(10) 0.650(15) 0.698 199
D(3,1) 8 —2.01(18) —0.187(10) 0.609(16) 0.653694
V(a4 10 —2.09(11) —0.187(4) 0.452(11) 0.474064
D1, 4 10 —2.10(11) —0.177(4) 0.427(11) 0.442671
V(2,3) 10 —1.9411)  -0.170(3) 0.522(10) 0.553 356
D(2,3) 10 —2.08(11) —0.189(3) 0.492(11) 0.524924
V(3,2 10 —-2.02(11) —0.189(3) 0.595(11) 0.634 758
D@3, 2 10 —1.99(11) —0.1853) 0.579(10) 0.616 846
V(4,1) 10 —1.95(11) —0.184(3) 0.668(10) 0.716 732
D@4, 1) 10 —1.92(11) —0.180(3) 0.636(10) 0.683031
V(1,5 12 —2.24(8) —-0.213(3) 0.441(8) 0.459443
V(2,4 12 —2.19(8) —0.210(3) 0.499(8) 0.525 490
D(2,4) 12 —2.07(8) —0.192(3) 0.482(7) 0.508479
V(3,3) 12 —2.04(8) — 0.559(8) 0.593499
D(3,3) 12 —2.00(8) — 0.530(8) 0.564 561
vV (1, 6) 14 —2.02(6) — 0.432(5) 0.459 443
D(1, 6) 14 —2.10(6) — 0.411(6) 0.386 294

This fact can be understood well by regarding the fully packed loop model as a special
case of the Of) loop model whose patrtition function is given by

Zloop(”l, x*l) — Z xNv*NnN'L (39)

loop configuration

where the summation is over all the non-intersecting loop configurations not necessarily fully
packed. Thus, the numh&f, of vertices visited by a loop can be different fravn In the two-
parameter spao@, x 1), the dense phase emerges in the region where thet@tiperature
|x~1|is small enough while the fully packed loop model is reproduced by settihtp exactly

zero.

For the simple square lattice and the hexagonal lattice, thexlihe= 0 is an unstable
critical line where a new universality emerges. This is due to the symmetryg> —x 1.
Actually, this symmetry holds because any loops on the simple square lattice visit an even
number of vertices.

The result in table 1 means that! = 0 is not special for other lattices. This is because
they admit loops which visit an odd number of vertices [13].
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7. Summary

I have estimated the number of Hamiltonian cycles on inhomogeneous graphs analytically and
numerically. To estimate it analytically, | have employed the field theoretic representation and
have applied the saddle point method. A formuladofor graphs with sublattice structures

has been obtained. The numerical estimation is based on the diagonalized transfer matrix of
the fully packed model on the infinite cylinder geometry.

The former result is simple and is believed to capture the physics of Hamiltonian cycles.
The latter is accurate and provides with the scaling exponents though it spends lots of computer
time. The results agree each other qualitatively. It is confirmed that the success of the estimate
wsp = 3/e, 4/e and §e by the former method was not accidental; it now works fine for a
family of lattices yielding various values afsp. Moreover, the former method successfully
predicts the relatiomSS = ©SP = pP1:27=3,

The relationw$, < »$s holds for all the pair$s — G’ | have examined so far. It may be
proved that this holds generally.

The latter method is useful in calculating the exact valug(or) of G with the planar
or cylinder topology. There seems to be, however, no simple way to apply this method to the
lattices with the torus and the higher-genus topology, and three-dimensional lattices. This is
due to the presence of numerous topological sectors of self-avoiding loops on the lattice [21].
In contrast, the field theoretic approach was able to predict a boundary condition dependence
of H(G) for a family of toric lattices [12]. Therefore, the two approaches are considered
complementary to each other.
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