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Abstract. A Hamiltonian cycle of a graph is a closed path that visits every vertex once and
only once. It serves as a model of a compact polymer on a lattice. I study the number of
Hamiltonian cycles, or equivalently the entropy of a compact polymer, on various lattices that
are not homogeneous but with a sublattice structure. Estimates for the number are obtained by
two methods. One is the saddle point approximation for a field theoretic representation. The other
is the numerical diagonalization of the transfer matrix of a fully packed loop model in the zero
fugacity limit. In the latter method, several scaling exponents are also obtained.

1. Introduction

A Hamiltonian cycle of a graph is a closed self-avoiding walk which visits every vertex once
and only once. The number of all the Hamiltonian cycles of a graphG is denoted byH(G).
Hamiltonian cycles have often been used to model polymers which fill the lattice completely [1].
The quantity logH(G) corresponds to the entropy of a polymer system onG in the compact
phase. One can enrich the model by introducing a weight that depends on the shape of cycles
in order to model more realistic polymers. For example, the polymer melting problem is
studied by taking into account the bending energy [2]. Another extended model relevant to
the protein folding problem is proposed in [3–5]. The quantityH(G) is also related to the
partition function of zero-temperature O(n) model in the limitn→ 0.

For homogeneous graphs (lattices) withN vertices, one expects thatH(G) behaves as

H(G)→ C(G)Nγ−1ωN (N →∞) (1)

where the entropy per vertex logω is defined by

logω = lim
N→∞

1

N
logH(G). (2)

The connectivity constantω is supposed to be a bulk quantity which does not depend on
boundary conditions, whereas the conformational exponentγ depends on such details of
graphs [6]. I assume that equation (1) is not multiplied by a surface termµ(N

σ ), σ < 1
proposed in [7–9] because in the present case Hamiltonian cycles fill the whole lattice which
itself does not have a boundary.

A field theory representation ofH(G) for an arbitrary graphG is introduced by Orland
et al [10] and has been used to study the extended models [2, 5] as well as the original
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Figure 1. The square-diagonal (Union Jack) lattice. The decomposition ofV consists
of two classes:V1 = {•} andV2 = {◦}.

one [11, 12]. For homogeneous graphs with the coordination numberq, the saddle point
approximation yields

H(G) ∼ (ωSP)
N ωSP := q

e
(3)

or ω ' ωSP. Equation (3) has been very successful. For the square lattice,ωSP = 4/e =
1.4715. . . is quite near to a numerical estimateω ' 1.473. . . [6, 13–15]. It is found that the
estimateωSP= 4/e is unaltered in the next leading order in the perturbation theory [12]. For
the triangular lattice, the field theory predictsωSP = 6/e = 2.207 28. . . while a numerical
calculation suggestsω ' 2.095. . . [13]. An exact solution is available for the hexagonal
lattice [11, 16] . It impliesω = 33/4/2 = 1.139 75. . ., which is near to the estimate
ωSP= 3/e = 1.103 64. . .. More examples are given in [11]. The saddle point equation is so
good that one may speculate that the system is dominated by the saddle point configuration.
It is desirable to understand why this approximation works so well.

In this paper, I systematically studyH(G) for inhomogeneousgraphs by the field theory.
A graph is said to behomogeneousif its automorphism group acts on the set of vertices
transitively. Roughly, a graph (lattice) is homogeneous if all the vertices are equivalent.
Note that the estimate (3) is not applicable to inhomogeneous graphs. An example of an
inhomogeneous graph is the square-diagonal lattice shown in figure 1. An earlier study in this
direction can be found in [11].

Inhomogeneous graphs are as important as homogeneous ones in physics because they
model certain realistic materials well. Applying the saddle point method to them is expected
to cast light on the nature of this extraordinary good approximation.

Another achievement in this paper is an accurate measurement of the connectivity constants
ω and scaling exponents by the numerical transfer matrix method. This is based on the mapping
onto the fully packed loop model in the zero fugacity limit. The results should be compared
with the field theoretic estimates.

The organization of the paper is as follows. In section 2, the field theoretic representation
ofH(G) is explained in order to make the presentation self-contained. I derive a formula for an
estimate ofH(G) by the saddle point method when a graphG has a sublattice structure which
makesG inhomogeneous in section 3. It is applied for a number of examples in section 4. In
section 5, I prove some exact relations amongH(G) for several lattices. I explain the method
and the result of numerical transfer matrix analysis in section 6. I summarize my results in
section 7.

2. Field theoretic representation

LetG = (V ,E) be a graph, whereV andE stand for the sets of vertices and edges. One sets
V = {r1, r2, . . . , rN }, N := #V . The number of Hamiltonian cycles, denoted byH(G), can
be written as a 2N -point function of a lattice field theory in a certain limit. To this end, one
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introduces O(n) lattice fieldφj (r) (r ∈ V, j = 1, . . . , n) with the action

S[ Eφ(r)] := 1
2

∑
r,r ′∈V,j,k=1,...,n

φj (r)(
√−11−1 + ε)rr ′δjkφk(r

′). (4)

An infinitesimal parameterε → +0 is the convergence factor. TheN × N matrix1 is the
adjacency matrix of the graphG:

1rr ′ :=
{

1 if r, r ′ ∈ V is connected by ane ∈ E
0 otherwise.

(5)

It can readily be shown that [10]

H(G) = lim
n→0

lim
ε→+0

1

n

∣∣∣∣∣
〈 Eφ2(r1)

2
. . .
Eφ2(rN)

2

〉∣∣∣∣∣ (6)

where

〈. . .〉 := 1

Z

∫ ∏
r∈V,j=1,...,n

dφj (r)(. . .)e
−S[ Eφ(r)] (7)

with the normalization factorZ to ensure〈1〉 = 1.
The proof is diagrammatic. Note that the propagator is proportional to the connectivity

matrix: 〈φj (r)φk(r ′)〉 = −
√−1δjk1rr ′ . When Wick’s theorem is applied, each of the

surviving diagram after taking then → 0 limit corresponds to a Hamiltonian cycle ofG
with an equal weight. The limitn→ 0 is taken for discarding disconnected diagrams.

When the graphG is homogeneous, there is a mean-field saddle point

φ(r) ≡ φ(0) =
√
−2q i (8)

whereq :=∑r 1rr ′ is the coordination number ofG. It gives rise to the estimate (3).

3. Saddle points for sublattices

Given a graphG = (V ,E) which is not necessarily homogeneous, I look for a saddle point
for the integral expression (6).

I decompose the setV into classes:V = tma=1Va, with Na := #Va. Let qa(r) be the
number of edges one of whose endpoints isr ∈ V and the other belongs toVa. I only consider
such divisions thatqa(r) = qa(r ′) holds ifr andr ′ belong to an identical class, say,Vb. Then it
makes sense to defineqab := qa(r). Because of the relationqabNb = qbaNa, Sab := qabN/Na
becomes a symmetric matrix.

Any graph has such a decomposition; one is free to takeVa = {ra}, a = 1, . . . , m = N .
I concentrate, however, on the case wherem stays finite in the limitN →∞. In other words,
I focus onG with a sublattice structure†. HereafterVa is referred as a sublattice.

I proceed to evaluate (6) by the saddle point method. Respecting the sublattice structure,
an ansatz for the saddle point configurationEφ(0)(r) for (6),

Eφ(0)(r) =
m∑
a=1

Evaδa(r) (9)

† Note, however, the saddle point method is worth considering as an approximation scheme even for the case
Va = {ra}, m = N . EstimatingH(G) by the saddle point method as described below takes only polynomial time in
m(= N) while determiningH(G) exactly for an arbitrary graphG is an NP-complete problem [17].
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is employed. HereEva is ann-vector variable to be solved, labelled bya = 1, . . . , m. The
membership functionδa(r) is defined by

δa(r) :=
{

1 if r ∈ Va
0 otherwise.

(10)

In order to calculateS[φ(0)], one needs to know how1−1 acts onδa. First, I write the the
number of edges connectingVa andr ∈ V in two ways as∑

r ′∈V
1rr ′δa(r

′) =
m∑
b=1

Na

Nb
qbaδb(r). (11)

Rewriting the right-hand side in terms of them×m symmetric matrixSab, I have

N

Na

∑
r ′∈V

1rr ′δa(r
′) =

m∑
b=1

Sabδb(r). (12)

I apply1−1S−1 on both sides to obtain1−1δa:
m∑
b=1

(S−1)ab
N

Nb
δb(r) =

∑
r ′∈V

(1−1)rr ′δa(r
′). (13)

Because of this relation,S[ Eφ(0)(r)] reduces to

S[ Eφ(0)(r)] = −N ln 2 +
m∑
a=1

Na ln(Eva · Eva)− N
2

m∑
a,b=1

(S−1)ab(Eva · Evb). (14)

One can assume that the saddle point is of the formEva = (xa, 0, 0, . . . ,0) and vary the action
(14) with respect toxa. One obtainsm saddle point equations

2Na
N
=

m∑
b=1

(S−1)abxaxb (a = 1, . . . , m) (15)

or equivalently
m∑
b=1

x−1
b qbax

−1
a = 1

2 (16)

which are to be solved forxa, a = 1, . . . , m. This is a set ofm quadratic equations withm
unknowns. If the solution to (15) is not unique, the one that minimizes the action (14) should
be selected. Putting the solution back into (14), one obtains an estimate

H(G) ∼ (ωSP)
N ωSP := 1

e

m∏
a=1

(
x2
a

2

)Na/N
. (17)

This generalizes the estimate (3) to the case of inhomogeneous graphs.

4. Decorated square lattices

4.1. Square-diagonal lattice

I apply the estimate (17) to the square-diagonal (Union Jack) lattice drawn in figure 1. The
decomposition ofV consists of two classesV1 = {•} andV2 = {◦}. The matrixqab is given
by

q =
(

4 4
4 0

)
. (18)
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Figure 2. Square-triangular latticesV (t = 2, u = 1) andD(t = 1, u = 4). The integerst and
u are the numbers of plaquettes with and without diagonal edges, respectively, consecutive in the
horizontal direction. The sublattices are distinguished by the shape of the vertices.

Each class has an equal number of vertices:N1 = N2 = 1
2N . I assume that the sublattice

structure is respected at the boundary.
The field configurationx1 = 8/δ, x2 = δ becomes a saddle point in the limitδ → 0.

Equation (17) yields

ωSD
SP =

4

e
(19)

which is, surprisingly, exactly the same value as the simple square lattice. It means that
theH(G) of the square-diagonal lattice grows no faster than that of the simple square lattice
though the former has many additional diagonal edges. It turns out that it is the case; the simple
square lattice and the corresponding square-diagonal lattice have exactly the same number of
Hamiltonian cycles, which I prove rigorously in section 5.1.

4.2. Square-triangular-type lattices

As another example of the use of (17), I apply it to a series of inhomogeneous† square-
triangular latticesD(t, u) andV (t, u) depicted in figure 2. They are square lattices with some
of the diagonal edges added. The matricesq for them are all tridiagonal matrices if one
labels sublattices appropriately. Here I show them × m matrix q and the fractionNa/N of
V (1, 2m− 1) andD(1, 2m− 3).

LatticeV (1, 2m− 1).

q =



4 1 0 0 · · · 0

1 2 1 0
...

0 1 2
. . .

. . .
...

0 0
. . .

. . . 1 0
...

. . .
. . . 2 1

0 · · · · · · 0 1 3


Na

N
= 1

m
(a = 1, . . . , m). (20)

† The latticeV (1, 1) turns out to be a homogeneous graph with the coordination numberq = 5.
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Figure 3. The estimates forω are plotted. The saddle point approximationωSP for V (t, u) (♦)
andD(t, u) (◦) with 2t + u . 16 are compared with the result of transfer matrix calculationωTM
(� and× with an error bar, respectively). For details atf = 1

2 ,
1
3 , see table 1.

LatticeD(1, 2m− 3).

q =



2 2 0 0 · · · 0

4 0 2 0
...

0 2 0
. . .

. . .
...

0 0
. . .

. . . 2 0
...

. . .
. . . 0 4

0 · · · · · · 0 2 0


Na

N
=


1

2m− 2
(a = 1, m)

2

2m− 2
(otherwise).

(21)

For smallm, equation (15) can be solved analytically. For example,V (1, 3) turns out to
possess the saddle point

x1

2
= x2

3
=
√

2 +
1√
3

(22)

which implies

ω
V (1,3)
SP = 1 + 2

√
3

e
= 1.642 25. . . . (23)

As m increases, one is forced to solve equation (15) numerically. Figure 3 illustrates the
dependence of logωSP of V (t, u) (�) andD(t, u) (◦) on f := t/(t + u). Note thatf = 0, 1
correspond to the simple square lattice and the triangular lattice, respectively.

For the purpose of comparison, I also plot an estimateωTM, the result of numerical
diagonalization of the transfer matrices forV (t, u) (�) andD(t, u) (×). The method to
calculateωTM is explained later in section 6. Here I only mention that, under plausible
assumptions,ωTM agrees with the true valueω within the precision of the numerical work
and the error originating from the finite-size effects, though it takes considerable memory and
CPU time to compute it†. On the other hand, calculatingωSP is quite easy.

† In the present analysis, the numerical diagonalization of sparse matrices of dimension.106 has been carried out.
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I argue that the estimatesωSP capture the qualitative feature ofωTM though there is a
certain amount of difference in the numerical values.

First of all, one notices thatωSPforD(1, 2m−3) is saturated just like the square-diagonal
lattice:

ω
D(1,2m−3)
SP = 4

e
(m = 2, 3, . . .). (24)

This suggests that the diagonal edges contribute almost nothing toH(D(1, 2m− 3)).
In accordance with this fact, the numerical estimateω

D(1,2m−3)
TM also stays identical with

ωTM of the simple square lattice. I will argue in section 5.2 thatω for D(1, 2m− 3) and that
for the simple square lattice should in fact be identical.

In the field theory, the saddle point forD(1, 2m− 3) is given by

x2a+1 = 8/δ x2a = δ (δ→ 0). (25)

It is intriguing that one needs the limiting procedureδ→ 0 whenever one obtains the saturated
valueωSP= 4/e.

Secondly, apart from the seriesD(1, 2m− 3), the estimateωSP increases withf for both
V (t, u) andD(t, u) as naturally expected. The result forωTM confirms this naive expectation.
Moreover, in both analysis,ωSP/TM forD(t, u) is always slightly lower thanV (t, u) for a fixed
(t, u).

Lastly, some detailed structures ofωTM are reproduced inωSP. For example, there is a
violation of simply-increasingness ofωTM for the pairD(2, 1) andD(3, 2). It is also present
for ωSP.

Nearf = 1, there is a considerable difference between the numerical values ofωSP and
ωTM. Note, however, this difference is already there for the triangular lattice, for which the
mean-field saddle point approximation (3) has been applied. Thus, this difference does not
imply the fault of the extension (17).

5. Exact relations amongH(G)

I prove some equalities amongH(G) for the square-diagonal lattice and the square-triangular-
type lattices.

5.1. Square-diagonal lattice

Let GSD be a square-diagonal lattice of a rectangular shape withLx × Ly = N vertices.
The periodic boundary condition is imposed across the edges of the rectangle givingGSD the
toric topology. I assume thatLx andLy are even and the square-diagonal lattice structure
is consistent with the boundary condition. I define a simple square latticeGSS as the lattice
obtained by removing all the diagonal edges fromGSD. It also hasN vertices. I shall prove
H(GSD) = H(GSS). In other words, I will show that Hamiltonian cycles onGSD passes
vertical and horizontal edges but not diagonal edges.

I decompose the set of vertices ofGSD into V1 andV2 as depicted in figure 1. Then
N1 = N2 = N/2. On a Hamiltonian cycle, there areN vertices andN edges. SupposeN(d)

edges out ofN are diagonal ones. The two ends of a diagonal edge belong toV1. On the other
hand, there areN −N(d) vertical or horizontal edges each of which connectsV1 andV2. Thus
I have

N1 = (2×N(d) + 1× (N −N(d)))× 1
2 (26)

and

N2 = (N −N(d))× 1
2 (27)
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Figure 4. An example of fully packed loop configuration withNL = 8 on the simple square
latticeV (0, 1) . The loops are drawn in thick lines.

which implyN(d) = 0.
BecauseH(GSD) = H(GSS) for GSD andGSS at any finite size, one can take the limit

N →∞ to haveωSD = ωSS.

5.2. LatticeD(1, 2m− 3)

LetGm be a finiteD(1, 2m − 3) lattice of a rectangular shape. Again I assume the periodic
boundary condition on both directions, respecting theD(1, 2m− 3) structure at the boundary.
I shall showH(Gm) = H(GSS).

For brevity, I writeG @ G′ if V = V ′ andE ⊂ E′, whereG = (V ,E) andG′ = (V ′, E′).
Apparently,H(G) 6 H(G′) if G @ G′. We have seen that the inequalityH(GSS) 6 H(GSD)

for the pairGSS@ GSD is actually an equality.
It is crucial to find thatGSS @ Gm @ GSD. Thus, I obtainH(GSS) = H(Gm). This

relation, in the limitN →∞, again implies thatωSS= ωD(1,2m−3).

6. Numerical transfer matrix method

In order to estimateω numerically, I map the problem of Hamiltonian cycles onto the zero
fugacity limit of the fully packed loop model. Then I represent the fully packed model onto a
state sum model with a local weight in order to construct a row transfer matrix. The quantity
ω is related to an eigenvalue of the transfer matrix.

The partition function of the fully packed model with the the loop fugacityn is given by

ZFPL(n) =
∑

fully packed loop configuration

nNL . (28)

The sum in (28) is over all the fully packed loop configurations (figure 4), that is non-intersecting
closed loops on the lattice such that every vertex is visited by exactly one of the loops. The
number of connected components of loops, denoted byNL , can be greater than one.

One can construct an equivalent state sum model in the following way. One begins with the
triangular latticeV (1, 0)with the coordination numberq = 6. The local degrees of freedomz
live on each edgee. The three possible values ofz(e) is← (a directed edge),→ (an oppositely
directed edge), and− (a vacant edge). Lete1, . . . , e6 be the edges that share a vertexr. States
on e1, . . . , e6 interact onr. The local vertex weight is

W(z(e1), . . . , z(e6)) = sk (s ∈ C) (29)

if there is exactly one ingoing arrow and an outgoing one atr, where the integerk is given by

k = (the angle of the right turn)

π/4
. (30)

as illustrated in figure 5. Otherwise,W = 0.
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Figure 5. A vertex weight for the state sum model for the fully packed loop model. The parameter
s is a complex number. Other configurations are prohibited (weightW = 0).

In other latticesD(t, u) andV (t, u), some of the diagonal edges in the latticeV (1, 0) are
missing. One extends the above construction to them by just interpreting these missing edges
as existing edges on which only the vacant edge state is allowed.

The partition function of the state sum model is given by

Z(s) :=
∑

z(e)=←,−,→(e∈E)

∏
r∈V

W(z(ej1), . . . , z(ej6)). (31)

Edgesej1, . . . , ej6 are understood to share a vertexr. One sees that the surviving configurations
in the state sum model are nothing but the fully packed loop configurations with a direction
associated with each loop component. Let us inspect a contribution from a loop. When one
walks along the loop in the associated direction to come back to the original point, one has
changed the direction±2π in total (if it is a topologically trivial loop). Therefore, the product
of the vertex weight on the loop iss±8 due to the choice (30). This is why the partition function
of the state sum model agrees with (28) with

n = s8 + s−8. (32)

Now one can think of a row transfer matrixT of the fully packed loop model. For the
latticesD(t, u) andV (t, u), one introduces a transfer matrix which maps a state on a row of
vertical and horizontal edges onto that on the upper row in figure 2. That is, a state acted by
T is a linear combination of an arrow configuration on the row|/|/|/|/ . . . /|/|. For the lattice
D(t, u), a one-unit shift in the horizontal direction is included inT to take care of the change
of the positions of diagonal edges.

It is important to note that the transfer matrixT commutes with the operator giving the
net number of upward arrows

d = (# ↑) + (#↗)− (# ↓)− (#↙). (33)

ThusT is block-diagonalized asT = ⊕dTd .
One considers an infinite cylinder geometry which is suitable for numerical transfer matrix

calculation. The horizontal direction is compactified with the periodL as indicated in figure 6.
In the d = 0 sector there can be loops which wind the cylinder once. It gives rise to a
complication because such a loop contributess0 + s0 = 2, nots8 + s−8 = n. To avoid this, one
introduces a seam as in figure 6. One declares that a loop which goes across the seam from the
left to the right should gain an additional weights8, while the left-going one should gains−8.

Hamiltonian cycles are encoded in thed = 0 sector in the limitn→ 0, ors → exp[±π i
16]

on the infinite cylinder. The conditiond = 0 excludes the configurations which have
unbalanced strings which travels from an end to the other end of the cylinder. The limit
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Figure 6. Square-triangular latticesV (t = 2, u = 1) andD(t = 1, u = 2). The periodic boundary
condition in the horizontal direction is introduced to give the lattice infinite cylinder topology. The
seam is indicated by broken lines.

n → 0 excludes small disconnected loops. In the following,n is simply set to zero. The
connectivity constantωTM(L) for this geometry is given by

logωTM(L) = 1

L
log |λ0

0(L)| (34)

whereλid(L) is theith largest (in the absolute value) eigenvalue ofTd(L). One expects that,
by taking theL→∞ limit, one arrives at the bulk valueωTM = ωTM(∞). The values ofωTM

in figure 3 have been calculated in this way.
I notice that that the relationωSS

TM = ωSD
TM = ωD(1,2m−3)

TM holds already at every finiteL.
I assume that the rotational symmetry is restored in theL → ∞ limit with the sound

velocityv = 1 and that the system is described by a conformal field theory [18], which is the
case for the simple square latticeV (0, 1). For other lattices, one observes, at least, that the
mass gap closes atL→∞. Then scaling exponents are related to the finite-size behaviour of
other eigenvalues of the transfer matrix [19,20]. The central chargec appears as†

logωTM(L) = 1

L
log |λ0

0(L)| = logωTM(∞) +
πc

6L2
+O(L−4). (35)

The correlation lengthsξi and the scaling dimensionsXi of general geometric operators labelled
by i are given by [14]

ξ−1
i = log

|λ0
i (L)|
|λ0

0(L)|
= 2πXi

L
+O(L−3). (36)

In particular, the geometric scaling exponentsX1 andX2 (corresponding to one and two
spanning strings, respectively) are related to the conformational exponentγ in equation (1) by

γ = 2(1−X1)ν
1

ν
= 2−X2. (37)

The result of the finite-size scaling analysis is shown in table 1. I have treated even and
oddL separately forV (0, 1) because there is an oscillatory behaviour of period two due to the
twist-like operator insertion [13]. I also see a period-three oscillation forV (1, 0). Presence
of such oscillations is not assumed for analysis of other lattices. I find that the exponentX2 is
always zero at finiteL and is supposed to be so in the limitL→∞.

The result in table 1 suggests that, except forV (0, 1)(= D(0, 1)) andD(1, 2m− 3), the
system lies in the same universality class as the dense phase of O(n) loop model atn = 0
whose exponents are

c = −2 X1 = − 3
16 = −0.1875 X2 = 0

ν = 1
2 γ = 19

16 = 1.1875.
(38)

† For the triangular lattice, the restoration of conformal symmetry occurs in the frame where the triangles are regular.
Thus the formulae should be modified by the factor of

√
3/4.
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Table 1. Exponents and the entropy per vertex estimated by the numerical transfer matrix method.
LatticesD(1, 2m− 3) are suppressed because they share the properties withV (0, 1). The integer
Lmax is the largestL, the size of the lattice in the horizontal direction, which has been examined.
The exponentX2 is also measured and is found to be zero for all the lattices.

Lattice Lmax c X1 logωTM logωSP

V (0, 1)L≡0 mod 2 14 −1.000(11) −0.044 23(81) 0.387 171(1) 0.386 294
V (0, 1)L≡1 mod 2 13 −2.510(5) −0.1875(10) 0.387 168(2) 0.386 294
V (1, 0)L≡0 mod 3 9 −2.06(8) −0.196(18) 0.740 88(7) 0.791 761
V (1, 1) 12 −1.98(9) −0.175(17) 0.563 057(18) 0.609 438
V (1, 2) 12 −2.00(4) −0.189(3) 0.498 809(3) 0.532 186
D(1, 2) 12 −1.98(10) −0.186(25) 0.470 379(3) 0.495 166
V (2, 1) 9 −1.93(9) −0.183(19) 0.619 823(4) 0.665 920
D(2, 1) 9 −1.98(3) −0.189(14) 0.571 025(1) 0.617 343
V (1, 3) 12 −1.90(29) −0.176(3) 0.469 05(4) 0.496 068
V (2, 2) 12 −1.89(18) −0.216(10) 0.557 61(4) 0.612 848
D(2, 2) 12 −1.90(14) −0.203(10) 0.539 17(3) 0.574 521
V (3, 1) 8 −1.87(18) −0.174(10) 0.650(15) 0.698 199
D(3, 1) 8 −2.01(18) −0.187(10) 0.609(16) 0.653 694
V (1, 4) 10 −2.09(11) −0.187(4) 0.452(11) 0.474 064
D(1, 4) 10 −2.10(11) −0.177(4) 0.427(11) 0.442 671
V (2, 3) 10 −1.94(11) −0.170(3) 0.522(10) 0.553 356
D(2, 3) 10 −2.08(11) −0.189(3) 0.492(11) 0.524 924
V (3, 2) 10 −2.02(11) −0.189(3) 0.595(11) 0.634 758
D(3, 2) 10 −1.99(11) −0.185(3) 0.579(10) 0.616 846
V (4, 1) 10 −1.95(11) −0.184(3) 0.668(10) 0.716 732
D(4, 1) 10 −1.92(11) −0.180(3) 0.636(10) 0.683 031
V (1, 5) 12 −2.24(8) −0.213(3) 0.441(8) 0.459 443
V (2, 4) 12 −2.19(8) −0.210(3) 0.499(8) 0.525 490
D(2, 4) 12 −2.07(8) −0.192(3) 0.482(7) 0.508 479
V (3, 3) 12 −2.04(8) — 0.559(8) 0.593 499
D(3, 3) 12 −2.00(8) — 0.530(8) 0.564 561
V (1, 6) 14 −2.02(6) — 0.432(5) 0.459 443
D(1, 6) 14 −2.10(6) — 0.411(6) 0.386 294

This fact can be understood well by regarding the fully packed loop model as a special
case of the O(n) loop model whose partition function is given by

Zloop(n, x
−1) =

∑
loop configuration

xNV−NnNL (39)

where the summation is over all the non-intersecting loop configurations not necessarily fully
packed. Thus, the numberNV of vertices visited by a loop can be different fromN . In the two-
parameter space(n, x−1), the dense phase emerges in the region where the O(n) temperature
|x−1| is small enough while the fully packed loop model is reproduced by settingx−1 to exactly
zero.

For the simple square lattice and the hexagonal lattice, the linex−1 = 0 is an unstable
critical line where a new universality emerges. This is due to the symmetryx−1 ↔ −x−1.
Actually, this symmetry holds because any loops on the simple square lattice visit an even
number of vertices.

The result in table 1 means thatx−1 = 0 is not special for other lattices. This is because
they admit loops which visit an odd number of vertices [13].
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7. Summary

I have estimated the number of Hamiltonian cycles on inhomogeneous graphs analytically and
numerically. To estimate it analytically, I have employed the field theoretic representation and
have applied the saddle point method. A formula forω for graphs with sublattice structures
has been obtained. The numerical estimation is based on the diagonalized transfer matrix of
the fully packed model on the infinite cylinder geometry.

The former result is simple and is believed to capture the physics of Hamiltonian cycles.
The latter is accurate and provides with the scaling exponents though it spends lots of computer
time. The results agree each other qualitatively. It is confirmed that the success of the estimate
ωSP = 3/e, 4/e and 6/e by the former method was not accidental; it now works fine for a
family of lattices yielding various values ofωSP. Moreover, the former method successfully
predicts the relationωSS= ωSD = ωD(1,2m−3).

The relationωGSP6 ωG
′

SP holds for all the pairsG @ G′ I have examined so far. It may be
proved that this holds generally.

The latter method is useful in calculating the exact value ofH(G) of G with the planar
or cylinder topology. There seems to be, however, no simple way to apply this method to the
lattices with the torus and the higher-genus topology, and three-dimensional lattices. This is
due to the presence of numerous topological sectors of self-avoiding loops on the lattice [21].
In contrast, the field theoretic approach was able to predict a boundary condition dependence
of H(G) for a family of toric lattices [12]. Therefore, the two approaches are considered
complementary to each other.
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